วันพฤหัสบดีที่ 19 มิถุนายน พ.ศ. 2557

อาร์คีมีดีส : Archimedes

อาร์คีมีดีส : Archimedes 
287 BC -  212 BC
        อาร์คิมีดีส เกิด 287 ปีก่อนคริสต์ศักราช ที่เมืองไซราคิวส์ (Syracuse) เกาะซิซิลี (Sicily)    และเสียชีวิตปี 212 ก่อนคริสต์ศักราช ที่เมืองไซราคิวส์ (Syracuse) เกาะซิซิลี (Sicily)

ผลงาน
        - กฎของอาร์คิมีดีส (Archimedes Principle) ที่กล่าวว่า “ปริมาตรของวัตถุส่วนที่จมลงในน้ำย่อมเท่ากับปริมาตรของน้ำที่ถูกแทนที่ด้วยวัตถุ” ซึ่งกฎข้อนี้ได้นำไปใช้ประโยชน์ในการหาความถ่วงจำเพาะของวัตถุ

        - ประดิษฐ์เครื่องทุ่นแรง ได้แก่ คานดีดคานงัด รอก ระหัดวิดน้ำ และล้อกับเพลา

        - อาวุธสงคราม ได้แก่ เครื่องเหวี่ยงหิน กระจกเว้ารวมแสง และเครื่องปล่อยท่อนไม้


        เมื่อเอ่ยชื่ออาร์คิมีดีส ไม่มีใครที่จะไม่รู้จักนามของนักวิทยาศาสตร์เอกผู้นี้ โดยเฉพาะกฎเกี่ยวกับการหาความถ่วงจำเพาะของวัตถุ หรือการหาข้อเท็จจริงเกี่ยวกับมงกุฎทองของกษัตริย์เฮียโร (King Hiero) ซึ่งเรื่องนี้เป็นเพียงส่วนหนึ่งเล็กน้อยเท่านั้น ถ้าเทียบกับสิ่ง ประดิษฐ์ และการค้นพบของเขาในเรื่องอื่น เช่น ระหัดวิดน้ำ คานดีดคานงัด ล้อกับเพลา เป็นต้น อาร์คิมีดีสขึ้นชื่อว่าเป็นบิดาแห่งกลศาสตร์ที่แท้จริงเนื่องจากสิ่งประดิษฐ์ของเขามักจะเป็นเครื่องผ่อนแรง ที่มีประโยชน์และใช้กันมาจนถึงปัจจุบันนี้อาร์คิมีดีสเป็นนักปราชญ์ชาวกรีก เกิดที่ เมืองไซราคิวส์ (Syracuse) บนเกาะซิซิลี (Sicily) เมื่อประมาณ 287 ก่อนคริสต์ศักราช บิดาของเขาเป็นนักดาราศาสตร์ชื่อ ไฟดาส (Pheidias)อาร์คิมีดีสมีความสนใจในวิชาคณิตศาสตร์เป็นอย่างมาก เขาจึงเดินทางไปศึกษาวิชาคณิตศาสตร์กับอาจารย์ผู้เชี่ยวชาญด้านคณิตศาสตร์ นามว่า ซีนอนแห่งซามอส ซึ่งก็เป็นลูกศิษย์คนเก่งของนักปราชญ์เลื่องชื่อลือนามว่า ยูคลิด (Euclid) ที่เมืองอเล็กซานเดรีย (Alexandria) ซึ่งได้ชื่อว่าเป็นศูนย์กลางแห่งวิชาการของกรีกในสมัยนั้น   หลังจากที่อาร์คิมีดีส จบการศึกษาแล้ว เขาได้เข้าทำงานในตำแหน่งนักปราชญ์ประจำราชสำนักของพระเจ้าเฮียโร งานชิ้นเอกที่เป็นที่รู้จักของคนทั่วไป คือกฎของอาร์คิมีดีส (Archimedes Principle) หรือ วิธีการหาความถ่วงจำเพาะของวัตถุ (Specific  Gravity) ซึ่งเรื่องเกิดขึ้นจากกษัตริย์เฮียโรทรงมีรับสั่งให้ช่างทำมงกุฎทองคำ โดยมอบทองคำให้ช่างทองจำนวนหนึ่ง เมื่อช่างทองนำมงกุฎมาถวาย ทรงเกิดความระแวงในท่าทางของช่างทำทองว่าจะยักยอกทองคำไป และนำโลหะชนิดอื่นมาผสม แต่ทรงไม่สามารถหาวิธีพิสูจน์ได้ ดังนั้นจึงทรงมอบหมายหน้าที่ การค้นหาข้อเท็จจริงให้กับอาร์คิมีดีส ขั้นแรกอาร์คิมีดีสได้นำมงกุฎทองไปชั่งน้ำหนัก ปรากฏว่าน้ำหนักของมงกุฎเท่ากับทองที่กษัตริย์เฮียโรได้มอบให้ไป ซึ่งช่างทองอาจจะนำโลหะชนิดอื่นมาผสมลงไปได้ อาร์คิมีดีสครุ่นคิดเท่าไรก็คิดไม่ออกสักที จนวันหนึ่งเขาไปอาบน้ำที่อ่างอาบน้ำสาธารณะแห่งหนึ่ง ขณะที่น้ำในอ่างเต็ม อาร์คิมีดีสลงแช่ตัวในอ่างอาบน้ำ น้ำก็ล้นออกมาจากอ่างนั้น เมื่อเขาเห็นเช่นนั้นทำให้เขารู้วิธีพิสูจน์น้ำหนักของทองได้สำเร็จ ด้วยความดีใจเขาจึง รีบวิ่งกลับบ้านโดยที่ยังไม่ได้สวมเสื้อผ้า ปากก็ร้องไปว่า “ยูเรก้า! ยูเรก้า! (Eureka)” จนกระทั่งถึงบ้าน เมื่อถึงบ้านเขารีบนำมงกุฎมาผูกเชือกแล้วหย่อนลงในอ่างน้ำที่มีน้ำอยู่เต็ม แล้วรองน้ำที่ล้นออกมาจากอ่าง จากนั้นจึงนำทองในปริมาตรที่เท่ากันกับมงกุฎหย่อน ลงในอ่างน้ำ แล้วทำเช่นเดียวกับครั้งแรก จากนั้นเขาได้นำเงินในปริมาตรที่เท่ากับมงกุฎ มาทำเช่นเดียวกับมงกุฎและทอง ผลการทดสอบปรากฏว่า ปริมาตรน้ำที่ล้นออกมานั้น เงินมีปริมาตรน้ำมากที่สุด มงกุฎรองลงมา และทองน้อยที่สุด ซึ่งจากผลการทดลองครั้งนี้สามารถสรุปได้ว่า ช่างทองนำเงินมาผสมเพื่อทำมงกุฎแน่นอนมิฉะนั้นแล้วปริมาตรน้ำของมงกุฎและทอง ต้องเท่ากัน เพราะเป็นโลหะชนิดเดียวกัน อาร์คิมีดีสได้นำความขึ้นกราบทูลกษัตริย์เฮียโรให้ ทรงทราบ อีกทั้งแสดงการทดลองให้ชมต่อหน้าพระพักตร์ เมื่อช่างทองเห็นดังนั้นก็รีบรับสารภาพแล้วนำทองมาคืนให้กับกษัตริย์เฮียโร การค้นพบครั้งนี้ของอาร์คิมีดีส ได้ตั้งเป็นกฎชื่อว่ากฎของอาร์คิมีดีส ต่อมานักวิทยาศาสตร์ได้นำหลักการเช่นเดียวกันนี้มาหาความถ่วงจำเพาะของวัตถุต่าง ๆ

        อาร์คิมีดีสไม่เพียงแต่พบวิธีหาความถ่วงจำเพาะของวัตถุได้เท่านั้น งานชิ้นสำคัญอีกชิ้นหนึ่งก็คือ การสร้างระหัดวิดน้ำ หรือที่มีชื่อเรียกอีกอย่างหนึ่งว่า “ระหัด 
เกลียวของอาร์คิมีดีส (Archimedes Screw)” เพื่อใช้สำหรับวิดน้ำขึ้นมาจากบ่อหรือแม่น้ำ สำหรับใช้ในการอุปโภคหรือบริโภค ซึ่งทำให้เสียแรงและเวลาน้อยลงไปอย่างมาก การที่อาร์คิมีดีสคิดสร้างระหัดวิดน้ำขึ้นมานั้น ก็เพราะเขาเห็นความลำบากของชาวเมืองในการนำน้ำขึ้นจากบ่อหรือแม่น้ำมาใช้ ซึ่งต้องใช้แรงและเสียเวลาอย่างมาก ระหัดวิดน้ำของอาร์คิมีดีสประกอบ ไปด้วยท่อทรงกระบอกขนาดใหญ่ภายในเป็นแกนระหัด มีลักษณะคล้ายกับดอกสว่าน เมื่อต้องการใช้น้ำ ก็หมุนที่ด้ามจับระหัด น้ำก็จะไหลขึ้นมาตามเกลียวระหัดนั้น ซึ่งต่อมามีผู้ดัดแปลงนำไปใช้ประโยชน์ในด้านต่างๆ มากมาย เช่น การลำเลียงถ่านหินเข้าสู่เตา และนำเถ้าออกจากเตา การบดเนื้อสัตว์ เป็นต้น นอกจากนี้อาร์คิมีดีสได้ประดิษฐ์เครื่องผ่อนแรงขึ้นอีกหลายชิ้น เพื่อสร้างความสะดวกสบายให้กับชาวเมือง ได้แก่ คานดีดคานงัด (Law of Lever) ใช้สำหรับในการยกของที่มีน้ำหนักมาก ซึ่งใช้วิธีการง่ายๆ คือ ใช้ไม้คานยาวอันหนึ่ง และหาจุดรองรับคานหรือจุดฟัลครัม (Fulcrum) ซึ่งเมื่อวางของบนปลายไม้ด้านหนึ่ง และออกแรงกดปลายอีกด้านหนึ่ง ก็จะสามารถยกของ ที่มีน้ำหนักมากได้อย่างสบาย นอกจากคานดีดคานงัดแล้ว อาร์คิมีดีสได้ประดิษฐ์รอก ซึ่งเป็นเครื่องกลสำหรับยกของหนักอีกชนิดหนึ่ง เครื่องกลผ่อนแรงทั้งสองชนิดนี้ อาร์คิมีดีสคิดค้นเพื่อกะลาสีเรือหลวงที่ต้องยกของหนักเป็นจำนวนมากในแต่ละ วัน เครื่องกลผ่อนแรงของอาร์คิมีดีส มีอีกหลายอย่าง ได้แก่ รอกพวง ซึ่งใช้หลักการเดียวกันกับรอกและล้อกับเพลา ใช้สำหรับเคลื่อนย้ายของที่มีขนาดใหญ่และน้ำหนักมาก เช่น ก้อนหิน เป็นต้น เครื่องกลผ่อนแรงของ



        อาร์คิมีดีสถือได้ว่าเป็นรากฐานที่สำคัญของวิชากลศาสตร์ และยังเป็นที่นิยมใช้กันมาจนถึงปัจจุบัน อีกทั้งได้มีการนำเครื่องกลผ่อนแรงเหล่านี้มาเป็นต้นแบบเครื่องกลที่สำคัญในปัจจุบัน เช่น ล้อกับเพลา มาใช้ประโยชน์ในการขับเคลื่อนของรถยนต์ เป็นต้น อาร์คิมีดีสไม่ได้เพียงแต่สร้างเครื่องกลผ่อนแรงเท่านั้น เขายังมีความชำนาญเกี่ยวกับคณิตศาสตร์ เขาสามารถคำนวณหาพื้นที่หน้าตัด ของทรงกรวย ทรงกลม และทรงกระบอกได้ โดยใช้สูตรทางคณิตศาสตร์ที่เขาเป็นคนคิดค้นขึ้น และหาค่าของ Pi (พาย) ซึ่งใช้ในการหาพื้นที่ของวงกลม ในปี 212 ก่อนคริสต์ศักราช กองทัพโรมันยกทัพเข้าตีเมืองไซราคิวส์ โดยยกทัพเรือมาปิดล้อมเกาะไซราคิวส์ไว้ อาร์คิมีดีสมีฐานะเป็นนักปราชญ์ประจำราชสำนัก จึงได้รับการแต่งตั้งให้เป็นแม่ทัพบัญชาการรบป้องกันบ้านเมืองครั้งนี้ อาร์คิมีดีสได้ประดิษฐ์อาวุธขึ้นหลายชิ้นในการต่อสู้ครั้งนี้ ได้แก่ เครื่องเหวี่ยงหิน โดยอาศัยหลักการของคานดีดคานงัด เครื่องเหวี่ยงหินของอาร์คิมีดีสสามารถเหวี่ยงก้อนหินข้ามกำแพงไปถูกเรือของ กองทัพโรมันเสียหายไปหลายลำ อาวุธอีกชนิดหนึ่งที่อาร์คิมีดีสประดิษฐ์ขึ้น คือ โลหะขัดเงามีลักษณะคล้ายกระจกเว้าสะท้อนแสงให้มีจุดรวมความร้อนที่สามารถทำ ให้เรือของกองทัพโรมัน ไหม้ไฟได้ นอกจากนี้ยังมีเครื่องกลอีกชนิดหนึ่งมีลักษณะคล้ายกับตอรืปิโดในปัจจุบัน เรียกว่า “เครื่องกลส่งท่อนไม้” ซึ่งใช้ส่งท่อนไม้ขนาดใหญ่ด้วยกำลังแรงให้แล่นไปในน้ำ เพื่อทำลายเรือข้าศึก กองทัพโรมันใช้เวลานานถึง 3 ปี กว่าจะยึดเมืองไซราคิวส์ได้สำเร็จ เมืองไซราคิวส์มิได้แพ้เพราะกำลังหรือสติปัญญา แต่แพ้เนื่องจากความประมาท ด้วยในขณะนั้นภายในเมืองไซราคิวส์กำลังเฉลิมฉลองกันอย่างสนุกสนาน เมื่อตีเมืองไซราคิวส์สำเร็จ แม่ทัพโรมัน มาร์เซลลัส (Marcellus) ได้สั่งให้ทหารนำตัวอาร์คิมีดีสไปพบเนื่องจากชื่นชมในความสามารถของอาร์คิมีดีสเป็นอย่างมาก ในขณะที่ตามหาอาร์คิมีดีส ทหารได้พบกับอาร์คิมีดีสกำลังใช้ปลายไม้ขีดเขียนบางอย่างอยู่บนพื้นทราย แต่ทหารผู้นั้นไม่รู้จักอาร์คิมีดีส เมื่อทหารเข้าไปถามหาอาร์คิมีดีสเขากลับตวาด ทำให้ทะเลาะวิวาทกัน ทหารผู้นั้นใช้ดาบแทงอาร์คิมีดีสจนเสียชีวิต เมื่อมาร์เซลลัสทราบเรื่องก็เสียใจเป็นอย่างมากที่ต้องสูญเสียนักปราชญ์ที่มีความสามารถอย่างอาร์คิมีดีสไป ดังนั้นเขาจึงรับอุปการะครอบครัวของอาร์คิมีดีสและสร้างอนุสาวรีย์ เพื่อให้ระลึกถึงความสามารถของอาร์คิมีดีส อนุสาวรีย์แห่งนี้มีลักษณะรูปทรงกลมอยู่ในทรงกระบอก จากผลงานการประดิษฐ์เครื่องกลผ่อนแรงของอาร์คิมีดีส ถือได้ว่าเขาเป็นผู้ให้กำเนิดวิชากลศาสตร์ ซึ่งเป็นวิชาที่มีประโยชน์อย่างมหาศาลทั้งในอดีตและปัจจุบัน






ทรงกลม มีปริมาตรและพื้นที่ผิวเป็น 2/3 ของทรงกระบอกที่บรรจุทรงกลมนั้นได้พอดี มีรูปปั้นทรงกลมในทรงกระบอกติดตั้งอยู่ภายในหลุมศพของอาร์คิมิดีส ตามคำขอของเขา


งานด้านคณิตศาสตร์
        อาร์คิมิดีสมักได้รับยกย่องในฐานะผู้ออก
แบบสิ่งประดิษฐ์กลไก แต่เขาก็มีส่วนร่วมในวิทยาการด้านคณิตศาสตร์ไม่น้อย พลูตาร์คเขียนไว้ว่า : "เขาทุ่มเทความรักและความทะเยอทะยานทั้งมวลไว้กับการเสี่ยงโชคอันบริสุทธิ์ ซึ่งปราศจากความจำเป็นแห่งมารยาใด ๆ ในชีวิต"

อาร์คิมิดีสใช้ระเบียบวิธีเกษียณ(method of exhaustion)ในการประมาณค่าของ π



        อาร์คิมิดีสสามารถใช้แนวคิดกณิกนันต์ในวิธีที่คล้ายคลึงกับแคลคูลัสเชิงปริพันธ์ของยุคใหม่ ด้วยการพิสูจน์แย้ง เขาสามารถหาคำตอบของปัญหาที่มีระดับความแม่นยำสูงมาก ๆ ได้โดยกำหนดขอบเขตที่คำตอบนั้นตั้งอยู่ เทคนิคนี้รู้จักกันในชื่อ ระเบียบวิธีเกษียณ (Method of exhaustion) ซึ่งเขานำมาใช้ในการหาค่าประมาณของ(พาย) วิธีการคือวาดภาพหลายเหลี่ยมขนาดใหญ่กว่าอยู่ข้างนอกวงกลม และรูปหลายเหลี่ยมขนาดเล็กกว่าอยู่ข้างในวงกลม ยิ่งจำนวนด้านของรูปหลายเหลี่ยมเพิ่มขึ้น มันก็จะใกล้เคียงกับขอบของวงกลมมากยิ่งขึ้น เมื่อรูปหลายเหลี่ยมมีจำนวนด้านถึง 96 ด้าน เขาคำนวณความยาวของแต่ละด้านรวมกันและแสดงถึงค่าของ  ที่อยู่ระหว่าง(ประมาณ 3.1429) กับ  (ประมาณ 3.1408) เทียบกับค่าที่แท้จริงของ  ที่ประมาณ 3.1416 เขายังพิสูจน์ด้วยว่าพื้นที่ของวงกลมนั้นเท่ากับ  คูณกับค่ากำลังสองของรัศมีของวงกลม ในงานเขียนเรื่อง On the Sphere and Cylinder อาร์คิมิดีสได้วางหลักเกณฑ์ของคุณสมบัติแบบอาร์คิมิดีสของจำนวนจริง ว่าค่ากนิกนันต์ใด ๆ เมื่อนำมาบวกเข้ากับตัวเองเป็นจำนวนครั้งมากพอ จะมากกว่าค่าอนันต์ของค่านั้น
        ในงานเขียน Measurement of a Circle อาร์คิมิดีสให้ค่ารากที่สองของ 3 ไว้ว่าอยู่ระหว่าง (ประมาณ 1.7320261) กับ (ประมาณ 1.7320512) โดยค่าที่แท้จริงคือประมาณ 1.7320508 ซึ่งเป็นค่าประมาณการที่ใกล้เคียงมาก เขาบอกค่านี้ออกมาโดยไม่ได้ให้คำอธิบายว่าใช้ระเบียบวิธีใดในการคิด วิธีการทำงานของอาร์คิมิดีสเช่นนี้ทำให้ จอห์น วอลลิส ระบุว่าเขากำลัง "ปกปิดวิธีการในการหาคำตอบ ราวกับว่าไม่ต้องการให้คนรุ่นหลังได้ล่วงรู้ แต่กลับขู่เข็ญให้ยอมรับผลลัพธ์นั้นแต่โดยดี"

  


         ในงานเขียน The Quadrature of the Parabola อาร์คิมิดีสพิสูจน์ว่า พื้นที่ภายใต้เขตล้อมของพาราโบลากับเส้นตรงหนึ่งเส้น มีค่าเท่ากับ เท่าของพื้นที่สามเหลี่ยมในเขตเดียวกันนั้น ดังแสดงใน เขาอธิบายผลลัพธ์ของปัญหานี้ด้วยอนุกรมเรขาคณิตอนันต์ซึ่งมีอัตราส่วนร่วม 





พจน์แรกของอนุกรมนี้คือพื้นที่ของสามเหลี่ยม พจน์ที่สองเป็นผลรวมของพื้นที่ของสามเหลี่ยม 2 ชิ้นที่มีฐานเท่ากับด้านประกอบที่เล็กกว่า และเป็นเช่นนี้ไปเรื่อย ๆ การพิสูจน์นี้ใช้การแปรค่าของอนุกรมอนันต์ที่ได้ผลรวมเข้าใกล้ 

 อาร์คิมิดีสพิสูจน์ว่า พื้นที่ส่วนหนึ่งของเส้นโค้งพาราโบลาในภาพบน เท่ากับของรูปสามเหลี่ยม    



        ในงานเขียน The Sand Reckoner อาร์คิมิดีสทำการคำนวณจำนวนเม็ดทรายที่เอกภพสามารถรองรับได้ การทำเช่นนั้น เขาได้ท้าทายข้อสังเกตว่าจำนวนของเม็ดทรายนั้นมากจนเกินกว่าจะนับได้ เขาเขียนว่า : "มีบางคน เช่นพระเจ้าเกโล (พระเจ้าเกโลที่ 2 โอรสของพระเจ้าเฮียโรที่ 2 แห่งซีรากูซา) ซึ่งคิดว่าจำนวนของเม็ดทรายนั้นมากมายจนเป็นอนันต์ และในความหมายของทรายนั้น ข้ามิได้หมายถึงที่มีอยู่ในซีรากูซาหรือส่วนที่เหลือของซิซิลี แต่รวมถึงส่วนที่พบในท้องถิ่นทุกหนแห่งไม่ว่ามีคนอยู่หรือไม่" ในการแก้ปัญหานี้ อาร์คิมิดีสได้ประดิษฐ์ระบบในการนับขึ้นโดยอ้างอิงจาก มีเรียด คำนี้มาจากภาษากรีกว่า murias หมายถึงจำนวน 10,000 เขาเสนอระบบจำนวนแบบหนึ่งโดยใช้การคูณมีเรียดกับมีเรียด (100 ล้าน) และสรุปว่าจำนวนของเม็ดทรายที่ต้องใช้ในการเติมเอกภพทั้งหมดให้เต็ม เท่ากับ 8 วิจินทิลเลียน หรือ 8×1063


ตำรา
        งานเขียนของอาร์คิมิดีสเขียนไว้ในภาษากรีกดอริค (Doric Greek) ซึ่งเป็นภาษาซีรากูซาโบราณ งานเขียนส่วนมากไม่สามารถรอดมาถึงปัจจุบันเหมือนอย่างงานของยูคลิด ตำรา 7 เล่มของเขาเป็นที่รู้จักก็ด้วยการถูกนักเขียนคนอื่น ๆ กล่าวอ้างถึงเท่านั้น พัพพัสแห่งอเล็กซานเดรียพูดถึง On Sphere-Making และงานอื่น ๆ เกี่ยวกับรูปหลายเหลี่ยม ขณะที่ธีออนแห่งอเล็กซานเดรียอ้างถึงใจความสำคัญหนึ่งเกี่ยวกับการหักเหของแสงจากงานเขียนชื่อ Catoptricab ตลอดช่วงชีวิตของอาร์คิมิดีส เขาทำให้งานของตนเป็นที่รู้จักผ่านการสนทนาอภิปรายกับนักคณิตศาสตร์คนอื่น ๆ ในอเล็กซานเดรีย ปี ค.ศ. 530 สถาปนิกชาวไบแซนไทน์คนหนึ่งชื่อ อิซิดอร์แห่งมิเลตุส ได้รวบรวมงานเขียนของอาร์คิมิดีสเข้าด้วยกัน และมีการวิจารณ์ผลงานของอาร์คิมิดีสจากยูโตเซียสแห่งอัสคาลอนในคริสต์ศตวรรษที่ 6 ซึ่งทำให้ผลงานของเขาเป็นที่รู้จักแพร่หลาย มีการแปลงานเขียนของอาร์คิมิดีสไปเป็นภาษาอารบิกโดย Thābit ibn Qurra (ค.ศ. 836-901) และภาษาละตินโดย Gerard แห่งครีโมนา (ค.ศ. 1114-1187) ระหว่างยุคเรอเนสซองส์มีการตีพิมพ์ Editio Princeps (เอดิชั่นแรก) ในกรุงเบเซิลเมื่อปี ค.ศ. 1544 โดย โจฮันน์ แฮร์เวเกน โดยแสดงงานเขียนของอาร์คิมิดีสทั้งในภาษากรีกและละตินประมาณปี ค.ศ. 1586 กาลิเลโอ กาลิเลอี คิดค้นสมดุลของสถิตยศาสตร์ของไหลเพื่อใช้ในการชั่งน้ำหนักโลหะในอากาศและในน้ำ โดยเห็นชัดว่าได้รับแรงบันดาลใจจากงานของอาร์คิมิดีส


ผลงานที่รอดมา
        - ว่าด้วยดุลยภาพของระนาบ (On the Equilibrium of Planes) หรือ จุดศูนย์ถ่วงของระนาบ (Gravity of Planes)
เขียนไว้สองเล่ม เล่มแรกมี 15 บทกับสัจพจน์ 7 ข้อ ส่วนเล่มที่ 2 มี 10 บท งานเขียนชิ้นนี้ อาร์คิมิดีสกล่าวถึงกฎของคาน โดยระบุว่า "น้ำหนักบนคานจะอยู่ในสมดุลที่ระยะห่างจากจุดหมุนเป็นอัตราส่วนผกผันกับน้ำหนัก"
อาร์คิมิดีสใช้หลักการนี้ในการหาทางคำนวณพื้นที่และจุดศูนย์กลางมวลของวัตถุรูปทรงต่าง ๆ กัน ซึ่งรวมถึงทรงสามเหลี่ยม สี่เหลี่ยมด้านขนาน และพาราโบลา

    - ว่าด้วยการวัดวงกลม (On Measurement of the Circle)เป็นงานสั้น ๆ ประกอบด้วย 3 บท เขียนในรูปแบบการสนทนากับโดซิเธอุสแห่งเพลูเซียม ผู้เป็นศิษย์ของโคนอนแห่งซามอส ในบทที่ 2 อาร์คิมิดีสแสดงให้เห็นว่า ค่า   (pi) มีค่ามากกว่า  แต่น้อยกว่า  ตัวเลขหลังนี้เป็นตัวเลขที่ถูกนำมาใช้เป็นค่าประมาณการของ π มาตลอดยุคกลาง และยังคงเป็นที่นิยมใช้กันอยู่ในปัจจุบันเมื่อต้องการคำนวณอย่างคร่าว ๆว่าด้วยเส้นเกลียว (On Spirals)
งานชิ้นนี้มี 28 บท และยังคงกล่าวถึงโดซิธีอุส ตำรานี้กล่าวถึงสิ่งที่ปัจจุบันเรียกชื่อว่า วงก้นหอยอาร์คิมิดีส (Archimedean spiral) นั่นคือ โลคัสของจุดที่เคลื่อนที่ (ด้วยความเร็วคงที่) ไปตามแนวเส้นตรง (ที่กำลังหมุนรอบตัวเองอยู่ด้วยความเร็วเชิงมุมคงที่) ณ จุดใด ๆ ซึ่งแสดงเป็นค่าคู่อันดับเชิงมุมได้ว่า (r, θ) สามารถแสดงเป็นสมการได้ดังนี้
โดย a และ b เป็นจำนวนจริง นี่เป็นตัวอย่างยุคแรก ๆ ของเส้นโค้งทางกล (เส้นโค้งที่เกิดจากจุดเคลื่อนที่) ในความเห็นของนักคณิตศาสตร์ชาวกรีก


        -  ว่าด้วยทรงกลมและทรงกระบอก (On the Sphere and the Cylinder) เขียนไว้สองเล่ม โดยเป็นการเขียนถึงโดซิธีอุส อาร์คิมิดีสเขียนถึงผลงานซึ่งเขาภาคภูมิใจมากที่สุด นั่นคือความสัมพันธ์ระหว่างทรงกลมกับทรงกระบอกที่มีความสูงและเส้นผ่านศูนย์กลางเท่ากัน ปริมาตรของทรงกลมคือ ส่วนปริมาตรของทรงกระบอกเท่ากับ 2πrพื้นที่ผิวของทรงกลมคือ 4πr2 ส่วนพื้นที่ผิวของทรงกระบอกเท่ากับ 6πr2 (รวมพื้นที่ฐานทั้งสองด้าน) โดยที่ r คือรัศมีของทรงกลมและทรงกระบอกนั้น ทรงกลมจะมีปริมาณเป็น 2/3 เท่าของปริมาตรทรงกระบอก ในขณะเดียวกันก็มีพื้นที่ผิวเป็น 2/3 เท่าของพื้นที่ผิวทรงกระบอกด้วย มีรูปปั้นทรงกลมและทรงกระบอกติดตั้งอยู่ในหลุมศพของอาร์คิมิดีสตามคำขอของเขาเอง


        - ว่าด้วยทรงกรวย และทรงกลม (On Connoids and Spheroids)เป็นงานประกอบด้วย 32 บทเขียนถึงโดซิธีอุส อาร์คิมิดีสคำนวณพื้นที่และปริมาตรของเสี้ยวทรงตัน ที่เกิดจากการหมุนภาคตัดกรวย (วงกลม วงรี พาราโบลา หรือ ไฮเพอร์โบลา) รอบแกนของตัวเอง



        - ว่าด้วยเทหวัตถุลอย (On Floating Bodies)   ในช่วงแรกของตำรานี้ อาร์คิมิดีสกล่าวถึงกฎสมดุลของของไหล (หรือสถิตยศาสตร์ของไหล) และพิสูจน์ว่าน้ำจะคงรูปทรงเป็นทรงกลมรอบ ๆ จุดศูนย์กลางของแรงโน้มถ่วง นี่อาจเป็นความพยายามอธิบายทฤษฎีของนักดาราศาสตร์ชาวกรีกร่วมสมัยกับเขา เช่น เอราทอสเทนีส ที่บอกว่าโลกมีรูปร่างกลม ของไหลในความหมายของอาร์คิมิดีสนั้นไม่ได้มีแรงโน้มถ่วงในตัวเอง เนื่องจากเขาตั้งสมมุติฐานว่ามีจุดอยู่จุดหนึ่งซึ่งทุกสิ่งตกลงไปหาเพื่อทำให้เกิดรูปทรงแบบทรงกลม    ในช่วงที่สอง เขาคำนวณตำแหน่งสมดุลของภาคตัดของรูปทรงพาราโบลา ซึ่งดูเหมือนเป็นภาพอุดมคติของรูปทรงของท้องเรือ ภาคตัดของเขาบางส่วนจะมีฐานอยู่ใต้น้ำ และยอดอยู่เหนือน้ำ ในลักษณะเดียวกันกับการลอยตัวของภูเขาน้ำแข็ง หลักการของอาร์คิมิดีสว่าด้วยการลอยตัว ถูกระบุเอาไว้ในงานเขียนชิ้นนี้ โดยระบุว่า   วัตถุใด ๆ ที่จมอยู่ในของไหลไม่ว่าทั้งหมดหรือบางส่วน จะประสบกับแรงต้านที่เท่ากันกับน้ำหนักของของไหลที่ถูกแทนที่ แต่เป็นไปในทิศทางตรงกันข้าม

        - เสี้ยวของพาราโบลา (The Quadrature of the Parabola)
เป็นงานเขียน 24 บทเขียนถึงโดซิธีอุส อาร์คิมิดีสใช้ระเบียบวิธี 2 ชนิดพิสูจน์ว่า พื้นที่ของส่วนใด ๆ ของพาราโบลากับเส้นตรง จะเท่ากับ 4/3 ของพื้นที่สามเหลี่ยมที่มีเส้นฐานและความสูงเท่ากับส่วนเสี้ยวนั้น เขาสามารถพิสูจน์ได้สำเร็จโดยการคำนวณค่าอนุกรมเรขาคณิตที่มีผลรวมถึงอนันต์ด้วยอัตราส่วน 1/4

        - (O) stomachion
เป็นงานปริศนาชิ้นส่วน คล้ายคลึงกับแทนแกรม มีตำราที่เอ่ยถึงงานลักษณะนี้ที่สมบูรณ์ยิ่งกว่า ในสมุดบันทึกของอาร์คิมิดีส (Archimedes palimpsest) อาร์คิมิดีสคำนวณพื้นที่ของชิ้นส่วน 14 ชิ้นที่สามารถประกอบกันเป็นรูปสี่เหลี่ยมจตุรัส งานวิจัยของ ดร.เรวีล เนตซ์ แห่งมหาวิทยาลัยสแตนฟอร์ดที่เผยแพร่ในปี ค.ศ. 2003 โต้แย้งว่า อาร์คิมิดีสพยายามจะบ่งบอกจำนวนวิธีที่ชิ้นส่วนเหล่านี้สามารถรวมกันเป็นรูปทรงสี่เหลี่ยมจัตุรัสได้ ดร.เนตซ์ คำนวณว่าการประกอบชิ้นส่วนเหล่านี้เป็นสี่เหลี่ยมจัตุรัสสามารถทำได้ 17,152 วิธี หากไม่นับการหมุนรูปและการสะท้อนรูปแล้วจะได้จำนวนวิธีจัดเรียงทั้งสิ้น 536 วิธีปริศนานี้เป็นตัวอย่างการแก้ปัญหาในยุคเริ่มแรกของคณิตศาสตร์เชิงการจัด
    ต้นกำเนิดของชื่อดั้งเดิมของปริศนาลักษณะนี้ยังไม่ชัดเจนนัก บ้างก็ว่ามันมาจากคำภาษากรีกโบราณเกี่ยวกับคอหรือคอหอย คือ stomachos (στόμαχος)  เอาโซเนียสเรียกปริศนาชนิดนี้ว่า Ostomachion ซึ่งเป็นคำประสมในภาษากรีก มาจากรากศัพท์ ὀστέον (osteon, กระดูก) และ μάχη (machē – ต่อสู้) นอกจากนี้ ปริศนานี้ยังเป็นที่รู้จักในชื่อว่า กระเป๋าของอาร์คิมิดีส หรือ กล่องของอาร์คิมิดีส


        -  ปัญหาเรื่องวัวของอาร์คิมิดีส (Archimedes' cattle problem)  ก็อตต์โฮลด์ อีฟราม เลสซิง เป็นผู้ค้นพบงานนี้ในต้นฉบับลายมือภาษากรีก ประกอบด้วยบทกวี 44 บรรทัด ที่ห้องสมุดเฮอร์ซอก ออกัสต์ ในเมือง Wolfenbüttel ประเทศเยอรมัน เมื่อปี ค.ศ. 1773 เป็นงานเขียนถึงเอราทอสเทนีสและนักคณิตศาสตร์คนอื่น ๆ ในอเล็กซานเดรีย อาร์คิมิดีสท้าทายคนเหล่านั้นให้นับจำนวนวัวที่อยู่ในคอกสัตว์ของพระอาทิตย์ โดยแก้ปัญหาจำนวนจากสมการของไดโอแฟนทัส มีปัญหาลักษณะนี้ในรูปแบบที่ยากกว่าซึ่งต้องหาคำตอบออกมาเป็นเลขยกกำลังสอง ผู้แก้ปัญหานี้ได้เป็นคนแรกคือ เอ. อัมทอร์ ในปี ค.ศ. 1880 คำตอบที่ได้เป็นจำนวนขนาดใหญ่มาก คือประมาณ 7.760271 x 10206544


        -  นักคำนวณทราย (The Sand-Rekoner)  เป็นตำราสั้น ๆ อธิบายระบบความคิดเรื่องจำนวนของกรีก อาร์คิมิดีสนับจำนวนของเม็ดทรายที่จะถมจนเต็มจักรวาล ในงานเขียนชิ้นนี้ยังกล่าวถึงระบบสุริยะตามทฤษฎีดวงอาทิตย์เป็นศูนย์กลางจักรวาล ซึ่งเสนอโดยอริสทาร์คัสแห่งซามอส รวมถึงแนวคิดร่วมสมัยอื่น ๆ เกี่ยวกับขนาดของโลก และระยะห่างระหว่างวัตถุท้องฟ้าต่าง ๆ อาร์คิมิดีสใช้ระบบจำนวนที่สร้างจากการยกกำลังของมีเรียด และสรุปว่าจำนวนเม็ดทรายที่จะถมจักรวาลได้คือ 8 x 1063 ตามระบบจำนวนยุคใหม่ ในจดหมายนำเรื่องของงานเขียนนี้ ระบุไว้ว่าบิดาของอาร์คิมิดีสเป็นนักดาราศาสตร์ ชื่อว่า ฟิเดียส นักคำนวณทราย หรือ Psammites เป็นงานเขียนที่เหลือรอดเพียงชิ้นเดียวที่อาร์คิมิดีสอภิปรายถึงมุมมองด้านดาราศาสตร์ของเขา


        - ระเบียบวิธีเกี่ยวกับทฤษฎีบทกลศาสตร์ (The Method of Mechanical Theorems)  แต่เดิมเชื่อกันว่าตำรานี้สูญหายไปแล้ว จนกระทั่งมีการค้นพบสมุดบันทึกของอาร์คิมิดีสในปี ค.ศ. 1906 ในงานเขียนนี้ อาร์คิมิดีสใช้แนวคิดกณิกนันต์ แสดงให้เห็นว่า การแตกรูปภาพหนึ่ง ๆ ออกเป็นชิ้นส่วนเล็ก ๆ จำนวนนับไม่ถ้วน สามารถใช้หาพื้นที่หรือปริมาตรได้อย่างไร บางทีอาร์คิมิดีสอาจเห็นว่าวิธีการนี้ยังไม่เคร่งครัดพอ เขาจึงใช้ระเบียบวิธีเกษียณ (method of exhaustion) มาช่วยในการหาคำตอบ งานเขียนนี้อยู่ในรูปแบบของจดหมายที่ส่งถึงเอราทอสเทนีสแห่งอเล็กซานเดรีย เช่นเดียวกับ ปัญหาเรื่องวัวของอาร์คิมิดีส



ผลงานที่สูญหาย
            -  ผลงานเรื่อง Book of Lemmas หรือ Liber Assumptorum เป็นหนึ่งในตำราของอาร์คิมิดีสเกี่ยวกับสัดส่วน 15 ประการของธรรมชาติของวงกลม สำเนาชุดที่เก่าแก่ที่สุดเท่าที่รู้จักกันเขียนเอาไว้ในภาษาอารบิก นักวิชาการ ที.แอล.ฮีธ และ มาร์แชล คลาเกตต์ โต้แย้งว่ารูปแบบในปัจจุบันนี้ไม่น่าจะเขียนขึ้นโดยอาร์คิมิดีส เพราะมีการอ้างถึงอาร์คิมิดีสเองด้วย จึงน่าจะเป็นงานดัดแปลงที่เกิดจากผู้เขียนคนอื่น Lemmas อาจเป็นงานที่สร้างขึ้นจากผลงานก่อนหน้านี้ของอาร์คิมิดีสซึ่งปัจจุบันสูญหายไปแล้ว

        นอกจากนี้ยังมีการกล่าวอ้างว่า อาร์คิมิดีสรู้จักสมการของเฮรอนซึ่งใช้ในการคำนวณพื้นที่ของสามเหลี่ยมจากความยาวของด้านทั้งสาม อย่างไรก็ดี หลักฐานอ้างอิงที่เชื่อถือได้ชิ้นแรกเกี่ยวกับสมการนี้ก็เป็นของเฮรอนแห่งอเล็กซานเดรียในคริสต์ศตวรรษที่ 1

ไม่มีความคิดเห็น:

แสดงความคิดเห็น